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Abstract 
Space-Based Radar (SBR) processing is a processor- and 
communication-intensive HPEC application that presents 
unique design challenges. This talk will concentrate on the 
presentation of simulation results of mapping a parallel 
Ground Moving Target Indicator (GMTI) application on an 
embedded multiprocessor satellite processing system 
featuring a RapidIO interconnection network. We consider 
three partitionings of a real-time GMTI algorithm executed 
on systems of different sizes and topologies. Each 
partitioning's system performance and algorithm 
scalability on various RapidIO systems is examined. 

Introduction  
RapidIO is an emerging open standard for high-
speed, embedded switched interconnection networks 
which supports data rates up to approximately 60 
Gbps. It is an open standard [1, 2] steered by a non-
profit organization known as the RapidIO Trade 
Association. RapidIO uses Low-Voltage Differential 
Signaling (LVDS) to minimize power usage at high 
clock speeds, and therefore is appropriate for use in 
HPEC systems. RapidIO is the latest commercial-off-
the-shelf (COTS) technology to be considered 
practical for inclusion in military embedded networks 
to improve cost-effectiveness and scalability. Moving 
from bus designs to switched interconnects will 
substantially increase the cost-effectiveness, 
robustness and raw network performance of future 
embedded systems.  

GMTI is an important application in military 
operations, since moving targets may be laid over a 
map of a battlefield for strategic planning during a 
conflict. GMTI works best when combined with 
some form of airborne radar system. Since space is 
the ultimate "high ground" for radar systems, having 
GMTI available in an SBR system is advantageous.  
The challenge for HPEC systems is to provide real-
time data in-system with minimal latency. In 
traditional air-based GMTI systems, a high-
performance cluster of workstations is used to 
process incoming radar data [3].  As GMTI requires 
costly adaptive processing (including Space-Time 
Adaptive Processing or STAP [4]) of high-resolution 
data, the algorithm imposes severe processing and 

communication challenges on space-based embedded 
systems with strict power, size, weight, and radiation 
constraints.  

In order to effectively design RapidIO-based 
architectures, it is essential to fully understand 
RapidIO's strengths and weaknesses. A simulation-
based testbed provides an ideal environment for 
performing tradeoff studies on RapidIO's salient 
features; therefore, we developed a simulation 
environment to prototype and evaluate RapidIO-
based multiprocessor satellite systems for Space-
Based Radar (SBR) applications within our discrete-
event simulator of choice, Mission-Level Designer 
[5]. Our RapidIO prototyping environment 
incorporates moderate-fidelity systems and 
components including RapidIO switches, end-points 
and processor models. This prototyping environment 
has been used to predict the performance of future 
RapidIO space-based GMTI systems, as well as 
examine possible power and scalability limitations 
the technology may impose.  

Experimental Setup  
We have started with a baseline GMTI algorithm and 
have employed three different decomposition 
strategies, including a “straightforward” approach, a 
staggered approach, and a parallel-pipelined 
approach. The straightforward approach maps the 
incoming data set for processing equally across each 
of the available processors. Since the GMTI 
algorithm is typically composed of signal processing 
procedures with no interprocessor communication 
during each stage, the algorithm can be considered 
embarrassingly parallel. The staggered partitioning 
method is based on the approach described in [6]. 
This approach is similar to the straightforward 
mapping approach, except incoming data is sent to 
groups of processors in a staggered fashion. Under 
this approach, each processor receives a larger 
amount of data to process at a time, but receives this 
data less frequently. Our parallel-pipelined approach 
is a simplified version of one presented in [7], 
adapted to fit our vector-based processor models and 
RapidIO interconnection network. We split the 

1 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 FEB 2005 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Virtual Prototyping and Performance Analysis of RapidIO-based System
Architectures for Space-Based Radar 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Florida 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

25 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



pipeline into four stages, with specific groups of 
processors in the system dedicated to each stage.  

A complete description of all system designs and 
network tradeoffs performed in the course of this 
study will appear in the full presentation. Due to page 
limitations, a condensed version follows. The sensors 
created new image data at a rate of 4.6 Gbps. 
Processors were modeled to perform all or a 
subsection of the GMTI algorithm as the partitioning 
warranted. RapidIO-related parameters for endpoints 
include a 250MHz physical-layer clock rate, 
input/output buffer sizes of 8 packets, and physical-
layer link width of 16 bits, among others. RapidIO 
switch model parameters include an average memory 
read/write latency of 72 ns and a central memory size 
of 10000 bytes, among others.  

Results  
Figure 1 shows a summary of the results of each of 
the three partitioning strategies executed on systems 
of different sizes. The results show a system of 24 
nodes is required to meet the application processing 
requirements of one coherent processing interval 
(CPI) per 256ms (denoted by the horizontal bar in the 
figure). The straightforward partitioning method 
provides the best raw performance on the RapidIO 
system, but the pipelining partitioning method may 
provide a more cost-effective strategy if individual 
processors for each GMTI step can be produced in a 
less expensive manner than an all-inclusive design. 
The staggered approach did not perform as well as 
the other two due to communication inefficiency. A 
broad array of additional results describing system 
design tradeoffs will be included in the final 
presentation but are omitted here due to space 
limitations. 

Conclusions  
The inclusion of RapidIO in future satellite payload 
processing systems is likely to improve performance 
as well as cost effectiveness of embedded SBR 
platforms. In order to prototype and predict the 
performance of future RapidIO space-based GMTI 
systems, simulation models were designed and 
developed using the Mission-Level Designer 
discrete-event simulator. Several systems, RapidIO 
versions, and GMTI decompositions were developed 
on which a tradeoff analysis was performed. The 
results showed a 24-processor solution met the 
algorithm's real-time requirements. The 
straightforward partitioning method provides the best 
raw performance on the RapidIO system, but the 
pipelining partitioning method may provide a more 

cost-effective strategy for some projects. RapidIO 
and other COTS-based switched interconnect designs 
have the potential to outperform traditional bus 
designs in embedded systems.  

Future directions for this work may include 
mapping other SBR algorithms with different 
processing characteristics such as Synthetic Aperture 
Radar (SAR). In addition, now that we have an initial 
prototyping environment developed, we plan to 
examine other RapidIO-specific design 
considerations and system development options.  
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Project Overview

Simulative analysis of Space-Based Radar (SBR) systems using 
RapidIO interconnection networks

RapidIO (RIO) is a high-performance, switched interconnect for 
embedded systems

Can scale to many nodes
Provides better bisection bandwidth than existing bus-based technologies

Study optimal method of constructing scalable RIO-based 
systems for Ground Moving Target Indicator (GMTI)

Identify system-level tradeoffs in system designs
Discrete-event simulation of RapidIO network, 
processing elements, and GMTI algorithm
Identify limitations of RIO design for SBR
Determine effectiveness of various GMTI algorithm 
partitionings over RIO network

Image courtesy [1]
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Background- RapidIO

Three-layered, embedded system interconnect architecture
Logical – memory mapped I/O, message passing, and globally shared memory
Transport
Physical – serial and parallel

Point-to-point, packet-switched interconnect
Peak single-link throughput ranging from 2 to 64 Gb/s
Focus on 16-bit parallel LVDS RIO implementation for satellite systems

Image courtesy [2]
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Background- GMTI

GMTI used to track moving targets on ground
Estimated processing requirements range from 
40 (aircraft) to 280 (satellite) GFLOPs

GMTI broken into four stages:
Pulse Compression (PC)
Doppler Processing (DP)
Space-Time Adaptive Processing (STAP)
Constant False-Alarm Rate detection (CFAR)

Incoming data organized as 3-D matrix (data cube)
Data reorganization (“corner turn”) necessary between stages for processing efficiency
Size of each cube dictated by Coherent Processing Interval (CPI)
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GMTI Partitioning Methods- Straightforward

Data cubes divided among all Processing Elements (PEs)
Partitioned along optimal dimension for any particular stage
Data reorganization between stages implies personalized all-to-all 
communication (corner turn) ⇒ stresses backplane links
Minimal latency

Entire cube must be processed within one CPI to receive next cube



28 September 2004 7

GMTI Partitioning Methods- Staggered

Data cubes sent to groups of PEs in round-robin fashion
Limiting each Processing Group (PG) to a single board significantly reduces 
backplane bandwidth impact

Time given to each PG to receive and process a data cube is N × CPI
N = number of processing groups
CPI = amount of time between generated data cubes

Latency to produce result is higher than in straightforward partitioning
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GMTI Partitioning Methods- Pipelined
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Each PE group assigned to process a single stage of GMTI
Groups may have varying numbers of PEs depending upon processing 
requirements of each stage

Potential for high cross-system bandwidth requirements
Irregular and less predictable traffic distribution
Frequent communication between different group sizes

Latency to produce result is higher than straightforward method
One result emerges each CPI, but the results are three CPIs old
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Model Library Overview

Modeling library created using Mission Level                    
Designer (MLD), a commercial discrete-event simulation modeling tool

C++-based, block-level, hierarchical modeling tool
Algorithm modeling accomplished via script-based processing

All processing nodes read from a global script file to determine when/where 
to send data, and when/how long to compute

Our model library includes:
RIO central-memory switch
Compute node with RIO endpoint
GMTI traffic source/sink
RIO logical message-passing layer
Transport and parallel physical
layers

Model of Compute Node
with RIO Endpoint
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RapidIO Models

Key features of Endpoint model
Message-passing logical layer
Transport layer
Parallel physical layer

Transmitter- and receiver-controlled flow control
Error detection and recovery
Priority scheme for buffer management
Adjustable link speed and width
Adjustable priority thresholds and queue lengths

Key features of Central-memory switch model
Selectable cut-through or store-and-forward routing
High-fidelity TDM model for memory access
Adjustable priority thresholds based on free switch memory
Adjustable link rates, etc. similar to endpoint model

Model of RIO
Central-Memory Switch
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GMTI Processor Board Models

System contains many processor boards connected via backplane
Each processor board contains one RIO switch and four 
processors
Processors modeled with three-stage 
finite state machine

Send data
Receive data
Compute

Behavior of processors controlled
with script files

Script generator converts high-level
GMTI parameters to script
Script is fed into simulations

Model of
Four-Processor Board

Processor script
send…

receive…
SimulationScript

generator
GMTI & system 

parameters
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System Design Constraints 

16-bit parallel 250MHz DDR RapidIO links (1 GB/s)
Expected radiation-hardened component performance by time RIO and 
SBR ready to fly in ~2008 to 2010

Systems composed of processor boards interconnected by RIO 
backplane

4 processors per board
8 Floating-Point Units (FPUs) per processor
One 8-port central-memory switch per board; implies 4 connections to 
backplane per board

Baseline GMTI algorithm parameters:
Data cube: 64k ranges, 256 pulses, 6 beams
CPI = 256ms
Requires ~3 GB/s of aggregate throughput from source to sink to meet 
real-time constraints
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Backplane and System Models

High throughput requirements for data source and corner turns require 
non-blocking connectivity between all nodes and data sources

7-Board System

4-Switch Non-blocking Backplane

Backplane-to-Board 0, 1, 2, 3 Connections

Backplane-to-Board 4, 5, 6, 
and Data Source Connections
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Overview of Experiments

Experiments conducted to evaluate strengths and weaknesses of 
each partitioning method
Same switch backplane used for each experiment
Varied data cube size

256 pulses, 6 beams for all tests
Varied number of ranges from 32k to 64k

Several system sizes used
Analysis determined that 7-board configuration necessary for 
straightforward method to meet deadline
Both 6- and 7-board configurations used for pipelined method
Staggered method does not benefit from a system larger than 5 boards 
with configuration used

Staggering performed with one processor board per group
Larger system-configurations leave processors idle
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Result Latency Comparison

Result latency is interval from 
data arrival until results reported
Straightforward achieved lowest 
latency, required most 
processor boards

No result for 64k ranges because 
system could not meet real-time 
deadline

Staggered requires least number 
of processor boards to meet 
deadline

Efficient system configuration, 
small communication groups
Tradeoff is result latency

Pipelined method a compromise

0

256

512

768

1024

1280

1536

32000 40000 48000 56000 64000

Number of ranges

La
te

nc
y 

(m
s)

Straightforward, 7 boards
Staggered, 5 boards

Pipelined, 6 boards
Pipelined, 7 boards



28 September 2004 16

Switch Memory Histogram with Straightforward Method
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Chart shows frequency of 
time free switch memory 
lies in each bracket
Max switch memory is 
16384 bytes
Results taken from switch 
on processor board 1

All processor board 
switches see essentially 
identical memory usage

~90% of time is spent with 
switch ~80% free

Most predictable 
communication patterns, 
enabling effective static 
planning of comm. paths

7-board, straightforward, 
48k ranges
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Switch Memory Histogram with Staggered Method
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Staggered method uses 
slightly more memory over 
course of simulation

More data flows through 
single switch during corner 
turn
Less spread in 
communication patterns 
than straightforward method

More switch memory usage 
indicates more contention 
for a particular port, not 
necessarily more utilization 
or communication

5-board, staggered, 
48k ranges



28 September 2004 18

Switch Memory Histogram with Pipelined Method
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Pipelined method stresses 
network

Irregular comm. patterns
Greater possibility for 
output port contention
Non-blocking network not 
helpful when multiple 
senders vying for same 
destination

Difficult to plan out optimal 
comm. paths beforehand

Much synchronization 
required to stagger many-
to-one communication, but 
not extremely costly in 
total execution time

7-board, pipelined, 
48k ranges
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Average Parallel Efficiency

Parallel efficiency defined as sequential execution time (i.e. result latency) divided 
by N times the parallel execution time

N = number of processors that work on a single CPI
Pipelined efficiency a special case, must use N/3 for fair comparison (shown) since all 
processors do not work on a CPI at the same time

Staggered method most efficient due to small communication groups and low 
number of processors working on same CPI

Straightforward method worst for opposite reason, pipelined method a compromise
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Conclusions

Developed suite of simulation models and mechanisms for 
evaluation of RapidIO designs for space-based radar
Evaluated three partitioning methods for GMTI over a fixed RapidIO 
non-blocking network topology
Straightforward partitioning method produced lowest result 
latencies, but least scalable

Unable to meet real-time deadline with our maximum data cube size
Staggered partitioning method produced worst result latencies, but 
highest parallel efficiency

Also able to perform algorithm with least number of processing boards
Important for systems where power consumption, weight are a concern

Pipelined partitioning method is a compromise in terms of latency, 
efficiency, and scalability, but heavily taxes network
RapidIO provides feasible path to flight for space-based radar

Future work to focus on additional SBR variants (e.g. Synthetic Aperture 
Radar) and experimental RIO analysis
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